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ABSTRACT  
Evaluation of intelligence in Teams of Unmanned Ground 
Vehicles (UGVs) requires the development of consistent metrics 
and benchmarks. This is a complicated process as the 
implementation of the UGVs is problem and domain specific. 
Different performance requirements give rise to different set of 
metrics making the comparison of performance between two 
implementations difficult. In this paper, we focus on three aspects 
of intelligence, namely reconfiguration, adaptation and learning, 
and communications in UGV teams and investigate the 
development of metrics for measuring their performance. We 
also investigate the available benchmarks for intelligent systems 
and verify their suitability for measuring the performance of 
UGV teams.  A hierarchical architecture called Adaptation and 
Learning at All levels (AL2) for the UGV teams is presented. 
This architecture is designed to allow for a modular and 
hierarchical approach to implement deliberative and reactive 
behaviors in teams of autonomous vehicles. In this 
implementation, system intelligence is incorporated at all levels 
of the hierarchy. The performance of the proposed architecture is 
evaluated using the metrics identified. 
Keywords: Performance Metrics, Intelligent Systems, UGVs, 
Adaptation and Learning. 
 
1. INTRODUCTION 
 
The high cost associated with the acquisition and 
deployment of mobile robots motivates the development of 
low cost multi-robot teams that can function cooperatively 
to achieve specified goals. As the performance 
requirements get more stringent and the application realm 
becomes more diverse, embedding intelligence in system 
becomes a critical part of the realization of the Unmanned 
Ground Vehicles (UGV) Teams.    
 The notion of “intelligence” and the requirements for 
such intelligent systems has been discussed in detail in [1]. 
For a control system, at a very minimum level, system 
intelligence implies the ability to sense the environment, to 
make the control decisions based on the task requirements 
and to take the necessary corrective actions. At a higher 
level, system intelligence may include the ability to 
recognize objects and events, to represent the knowledge 
in a world model and to plan for the future.  Intelligence at 

its highest level provides the ability to perceive and 
understand, to predict outcomes based on actions, to 
choose wisely between actions, and to maximize the 
chances of success under variety of circumstances. In 
general, intelligence embodies the ability to learn from 
experience and adapt successfully to the environment. For 
successful implementation, however, “intelligence” has to 
be formalized and the required metrics for its measurement 
developed. 
 The challenges and issues in defining performance 
metrics for intelligent systems are discussed in [2, 3].  The 
analysis of the system architecture and configuration is 
proposed to develop a measure of “Machine Intelligent 
Quotient (MIQ)” in [4].  In [5], requirement specifications 
and system verification are used to develop a formal 
method to specify the performance metrics. Techniques to 
assign metrics to intelligent systems are also explored in [6, 
7]. 
 Designing intelligent systems is a complex task 
requiring the integration of a diverse set of hardware and 
software components. Intelligence can be formally defined 
as “the ability of a system to behave appropriately in an 
uncertain environment” where “appropriate behavior 
maximizes the likelihood of the system’s success in 
achieving its goals [1]”. Such an intelligent system should 
be able to respond to sensory feedback at every level such 
that goals are achieved despite perturbations and 
unexpected feedback. Since intelligence responds to 
sensory feedback at all levels, overall effectiveness 
requires such ‘system intelligence’ to be distributed in 
nature. Therefore, any measure of the “intelligence” must 
account for the “intelligence” at each level of the system. 
Typical components that are to be looked at are: 
 
a. Sensors and actuators  
b. Knowledge representation and world model  
c. Planning and control 
d. Learning and adaptation 
 
In addition to the above, metrics are required to measure 
the level of system autonomy. Some of the measures 



proposed in literature measure the sensitivity of the 
implementation to environment and the learning 
algorithms that are implemented [8]. For a system 
comprising a single robot, some possible metrics [9] are (a) 
the ability to choose strategies or algorithms; (b) the ability 
to generate reactive and deliberative behaviors; (c) 
effectiveness in accomplishing goals and objectives; (d) 
efficiency of operations.  
 While the above metrics are adequate to describe high 
level system performance, they do not give insight into the 
functioning of UGV teams. In the case of UGV teams the 
mission complexity and uncertainty in the environment 
impose more stringent requirements on the “system 
intelligence”. In this case, the design must address 
additional issues such as:  

1) Dynamic reconfiguration of the UGV teams to meet 
mission requirements. This situation is typically 
encountered when a new team has to be formed, or 
when a team has to be augmented with additional 
resources. Dynamic modification of teams also 
occurs during formation control of UGVs. 

2) Coordination and Cooperation between team 
members, and  

3) Distributed real-time communications between team 
members and other teams. 

 These requirements have strong impact on the 
implementation of every level in the hierarchy of the 
system. Thus, in addition to the metrics for the overall 
system performance, the performance analysis requires the 

definition of metrics for each level of the hierarchy in the 
implementation.  
 In this paper, a hierarchical architecture called 
Adaptation and Learning at All Levels (AL2), that allows 
system intelligence to be incorporated at all levels of the 
hierarchy is proposed. This architecture is modular, 
scalable and flexible. Specific requirements on the UGV 
teams are listed and their impact on the entities in each 
layer is discussed. The development of metrics is then 
discussed based on this implementation framework. The 
rest of this paper is organized as follows: Section 2 
presents the AL2 architecture for teams of UGVs. The 
metrics needed to evaluate the performance of the team are 
discussed in Section 3. The implementation of the 
proposed architecture for the development of intelligent 
teams of unmanned ground vehicles is then presented in 
Section 4.   
 
2.  AL2 ARCHITECTURE 
 
In this section, architecture is proposed that enables the 
design of complex hierarchical systems using simple 
components whose performance can be rigorously 
analyzed. This architecture, called Adaptation and 
Learning at all Levels (AL2), allows for intelligence to be 
implemented at all levels of the hierarchy and for 
adaptation and learning occurring at different granularities 
throughout the system.  
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Fig. 1 Architecture for Adaptation and Learning at All Levels (AL2)  



 The proposed architecture (AL2) envisions one or 
more robotic agents working as a group. At the lowest 
level (L1), each robot agent has a control agent (CA), an 
actuator agent (AA), and a sensor agent (SA). The control 
agent is responsible for attaining the commanded system 
performance at the lowest level. It can command the 
sensor agent to override its output values, recalibrate its 
signal, as well as perform rudimentary signal processing 
like filtering.  The AA, CA, and SA have the lowest level 
of autonomy.  This level (L1) is characterized by stringent 
real-time requirements and deterministic behavior. At a 
very fundamental level, this design is adequate for a 
robotic agent to function and perform repetitive tasks in a 
structured environment. Note that, because of our 
distributed communication infrastructure, the sensor, 
actuator, and control sources (and the corresponding sub-
agents) for a single robot agent need not be present on the 
same physical platform.  For example, a platform lacking a 
camera and image processing capabilities could still 
perform leader-following if the leader platform had a rear-
facing or omnidirectional camera (or other sensor) that 
could be used to sense the relative position of the follower 
platform. 
 In order to meet the requirements of fault tolerance, 
uncertainty in the system model and the environment, we 
propose a distributed architecture wherein the higher layer 
(L2) incorporates elements that instill higher-level 
intelligence in the robot. In this layer, the sensory signals 
from Layer L1 are processed by the Estimator Agent (EA). 
The output of the Estimator is then used to modify/update 
the local representation of the World Model (WM) and as 
input to the Control Agent.  The distributed intelligence 
paradigm that is proposed means that EA can now include 
algorithms for fault detection, dynamic sensor 
reconfiguration, and sensor fusion at the level of a 
deliberative robot agent.  The WM entity in the robot agent 
maintains information about the environment that is 
necessary for the successful tasking of the robot. Typically, 
this would include local map information, friend/foe 
classification, targets and obstacles etc.   The Planning 
Agent (PA) utilizes the information from the local model 
of the world (WM) and the high-level task requirements to 
generate a plan that is communicated to the control agent 
in layer L1.  The PA implements algorithms for path 
planning, obstacle avoidance, optimization, etc., for an 
individual robot.  Level L2 is characterized by increased 
autonomy and less stringent real-time requirements. 
 A team of robots consists of a number of individual 
robot agents possibly with differing sensor/actuator suites 
and capabilities.  The coordination between these agents is 
managed by the PA entity at the level of the robot group 
(L3). Information sharing between L2 entities is controlled 
by the entities in L3. This increases the security of the 
implementation because the L2 entities can function 
independently of each other, while still functioning in a 
coordinated manner.  The primary function of the entities 

in Layer 3 is to coordinate the working of the robot agents 
in the group. L3 handles all reassignments of tasks 
between different robot agents in L2. Introduction of new 
robot agents or sensor suites, etc., are the exclusive domain 
of L3. The outputs of all the EAs in layer L2 provide the 
input to the EA module in L3. Team-level sensor fusion 
amongst the different robotic agents is accomplished by 
the EA at L3. This EA module is used to update the world 
model (WM) in Layer 3. This WM also manages the 
information sharing among the robot agents in L2. The 
planning agent (PA) in this layer does the task 
decomposition from the mission requirements and updates 
the individual PAs in L2.  It is to be noted that the 
architecture specified is independent of hardware and 
software implementations and individual elements in L2. 
 Layer 4 (L4) manages the coordination between 
groups of robot agents. The highest level of intelligence 
and autonomy and the lowest level of real-time criticality 
characterize L4. Dynamic reassignment of the 
responsibilities of each group is handled by L4.  
 The proposed architecture will enable the 
development of groups of unmanned ground vehicles that 
can be dynamically configured and retasked.  The 
architecture is flexible and is not dependent on the type of 
controllers or algorithms implemented in any given layer. 
 
3. DEVELOPMENT OF METRICS FOR 

SYSTEM INTELLIGENCE 
 
In this section, the metrics required to evaluate the 
performance of the UGV teams with respect to 
reconfiguration, cooperation and the real-time 
communication between team entities are addressed. 
 
3.1 Dynamic Reconfiguration of Hardware and 
Software 
 
To meet the operational requirements for different tasks, 
the system should have the intelligence to implement 
different software and hardware configurations 
dynamically at the every level of the hierarchy. Plug-and-
play sensors and actuators require relevant signal 
processing elements and software drivers to be loaded and 
the data made available seamlessly to the application. Fault 
handling on the other hand might necessitate the routing of 
signals dynamically through a different part of the system 
in order to bypass a faulted element. The capability of the 
system to handle these requirements can be evaluated by 
the following set of metrics. 
 
a. Is the system reconfigurable?  
 The rigidity of the implementation can be assessed by 
checking the amount of reconfigurable entities in the 
implementation. A typical implementation may consist of 
fixed hardware and software components and some 



modules whose functionality can be modified at run-time 
either by the user or by other processes. The amount of 
reconfigurable resources as a ratio of the overall system 
resources is a measure of the reconfigurability of the 
system.  
 
b. Is the system reconfiguration static or 
dynamic? 
 Static reconfiguration requires the system to be taken 
off line and reconfigured before it is deployed. On the 
other hand, dynamic reconfiguration can take place while 
the system is under operation. Dynamic reconfiguration is 
essential when it is not feasible to take the system off-line 
to implement changes.  
 
c. Can the system be fully / partially 
reconfigured? 
 Full and partial reconfigurations are important aspects 
of the design of intelligent systems. Systems typically need 
to execute special tests at startup to verify proper system 
functioning. Once the startup tests are complete, the 
system can transition to the “run-time” mode. While it is 
easy to load test software to run system tests at startup, the 
tests that can be run are constrained by the hardware. By 
incorporating the ability to change the configuration of the 
hardware, for example by using FPGA devices, the same 
hardware can be used for system tests at startup and then 
“fully” reconfigured for run-time operations. The ability to 
“fully” reconfigure the hardware is also essential to the 
retasking of the individual robot. When the robot is 
retasked, sensor and actuator configurations can be 
selected that adapt the robot for the specified task. Since 
the embedded hardware can be optimized for the specific 
task, the overall performance can be improved without an 
increase in system cost.  
 Often, it is required to re-route the signals to 
accommodate for faults or add additional circuitry to 
handle signals from new sensors that come on-line. In such 
circumstances, unused portions of the FPGA can be 
configured to handle this requirement while the rest of the 
device is unaffected. Such reconfiguration, called Partial 
Reconfiguration, is essential to support retasking of 
individual robots, plug-and-play transducers, and for fault 
accommodation. 
 
3.2 Coordination and Cooperation Between 
Team Members 
  
Traditional control theory enables the design of controllers 
in a single mode of operation in which the task and the 
controlled plant are fixed. Contrary to this, in the case of 

UGV teams, team members usually interact with each 
other and with uncertain or unstructured environments. 
The team is to reach a goal destination, negotiate around 
obstacles and satisfy constraints on the formation. Thus, 
any measure of performance of the UGV teams has to 
address the ability of the teams to coordinate and cooperate 
with another in order to successfully accomplish the 
overall mission objective. The effectiveness of the 
implementation of UGV teams for coordination and 
cooperation among team entities can be measured by the 
following set of metrics. 
 
a. Is the UGV team capable of executing simple 

formations? 
  The ability of the UGV team to execute simple 
formations like leader-follower, straight line, and convoy 
are a good indication of the coordinated activity among the 
members of the UGV team.  
 
b. Is it possible for individual members in the 

team to seamlessly share sensory information, 
world models, and data? 

 The performance of the UGV team can be 
significantly improved if the sensors could be calibrated 
using reference data gathered by an external entity. The 
ability to use sensory information from other team 
members also extends the capability of a team in the face 
of sensory failures. Successful implementation of 
intelligent UGV teams requires the ability for each 
member of the team to benefit from the knowledge gained 
by other team members. Thus by sharing the world models 
and the knowledge, UGVs can demonstrate behaviors that 
are not programmed. Similarly, sharing of performance 
data between members is critical to the efficient operation 
of the UGV team. 
 
c. Can an UGV team be dynamically modified by 
the addition or removal of a team member? 
 Operational damage to an UGV or changing mission 
requirements often requires augmentation of an UGV team 
with additional resources. The ability to recognize the 
availability of additional resources and retask each of the 
UGVs in the team is a measure of the dynamic adaptability 
of the UGV team. This characteristic is also important in 
cases where an UGV team moving in a formation has to 
navigate around a dynamic obstacle. In this case, the team 
has to split into two sub-teams, maintain sub-formations 
while avoiding the obstacle and then rejoin in the original 
formation. 

 
  



3.3 Distributed Real-Time Communications  
 
Real-time communications are essential to support 
other functions within the UGV teams. The 
communication scheme has to be flexible and allow 
for communication of differing transmission rates, 
media, and security. The ability of the system to 
dynamically select channels of communication to 
improve performance and reduce power consumption 
is critical to the performance of the team. The 
following characteristics can be used as a measure of 
the performance of the communications scheme. 
 
a. Is there a mechanism for the intra-layer 
and inter-layer communications? 
 Teams of UGVs have to communicate and 
coordinate at several levels [11]. Therefore in each 
layer, modular implementation of the entities with 
appropriate communication interfaces is crucial for 
the successful coordination between UGVs. The 
communication mechanism will have to provide 
visibility into each entity at every level of the 
implementation. For example, the ability to share 
sensory data, world models, or plans between 
different UGVs in a team is essential to the 
implementation of intelligent UGVs. Intra-layer and 
inter-layer communication is essential for the 
intelligence of an UGV while communication 
between different UGVs and teams of UGVs is 
crucial for the implementation of intelligent teams of 
UGVs. 
 
b. Is the communication scheme used flexible?  
 The higher layers in the implementation of an 
UGV are typically characterized by abstract entities 
where intelligent decisions are made. The lower 
layers on the other hand, are characterized by real-
time control modules where traditional closed loop 
control decisions are taken. The varied nature of 
communication at each level in the implementation of 
an UGV implies that the communication scheme 
employed must be flexible enough to enable the 
dissemination of high-level abstract information as 
well as the low-level real-time data.  
 
b. What are the communication mechanisms 
and the guaranteed performance? 
 Successful operation of the UGV teams requires 
a number of communication techniques. Commonly 
implemented ones are the ability to provide query-
and-response mechanism, broadcast and periodic 
transmission of data between different entities in the 
implementation. Key properties such as bandwidth, 
transmission rates, protocol overhead, transmission 
error rates, error correcting methods etc. are to be 
analyzed to ensure that the communications do not 
become a bottleneck in the performance of the overall 
system. 
 
 
 

4. CASE STUDY 
 
The proposed framework is tested by implementing 
the L1 layer of the proposed architecture on the 
Xilinx Virtex-II Pro platform [13]. This platform was 
selected based on its capability to implement 
reconfigurable architectures, and the excellent 
development tools and product support. The Virtex-II 
Pro XC2VP4 has a PowerPC core, 6768 logic cells, 
504 KBits BRAM, 4 3.125 Gbps RocketIO 
transceivers, and 3.01 Mbits configuration space. 
  The Xilinx Virtex-II Pro device is a user 
programmable gate array with embedded PowerPC 
processor and embedded high-speed serial 
transceivers. The Xilinx Virtex architecture is coarse 
grained and consists of a number of basic cells called 
configurable logic blocks (CLBs). These logic blocks 
are arranged in rows and columns, with each CLB 
consisting of four logic cells arranged in two slices. 
Each CLB also contains logic that implements a four-
input look up tables (LUTs). Each slice contains two 
function generators, two storage elements, arithmetic 
logic gates, large multiplexers, wide function 
capability, fast-carry look ahead chains, and 
horizontal cascade chains. The function generators 
are configurable as four input look up tables (LUTs), 
sixteen bit shift registers, or as sixteen bit selective 
RAM memory. Each CLB also has fast interconnect 
and connects to a generalized routing matrix (GRM) 
to access general routing resources. The Virtex-II Pro 
has SelectIO-Ultra blocks (IOBs) that provide the 
interface between the package pins and the internal 
configurable logic.  Active Interconnect Technology 
connects all these components together. The overall 
interconnection is hierarchical and is designed to 
support high speed designs. 
 The programmable elements in the Virtex-II Pro, 
including the routing resources, are controlled by 
values stored in the static memory cells. The device is 
configured by loading the bitstream into the internal 
configuration memory. These values can be reloaded 
to change the functions of the programmable 
elements. The Xilinx Virtex family of FPGAs 
supports both partial as well as dynamic 
reconfiguration. Partial reconfiguration can be 
achieved in one of the two ways, namely Module-
based partial reconfiguration and difference-based 
reconfiguration. In the module-based reconfiguration, 
the entire module can be reconfigured. The height of 
the reconfigurable module is the height of the device 
and the module can cover one or more columns. In 
difference-based reconfiguration, the reconfiguration 
is done by making a small change in the design, and 
then generating a bit-stream based only on the 
differences in the two designs. Switching the 
configuration from one implementation to another is 
easy and very quick.  
 The system is designed with PPC405 processor 
core, SDRAM controller connected to Processor 
Local Bus (PLB) and general purpose Inputs-Output 
(GPIO) devices like Leds, Push buttons, UART and 
dip switches are connected to its On-chip Peripheral 
Bus (OPB). These are the components available on  



 
Fig. 2.  Implementation of PWM motor control with dynamic reconfiguration for fault accommodation. 

 
Fig. 3.  Neural Network based compensation of actuator nonlinearities. 

 
 
Fig. 4.  Implementation of a one-layer Neural Network in Simulink using Xilinx Toolset. 
 



the board, so the first step is to verify the proper 
functionality of all these components. To do this, the 
processor boots up with a configuration file to test all the 
components. On successful completion of built in self test, 
the processor fetches the second configuration file to 
configure itself and the board, switching into operational 
mode. If subsequent reconfiguration of the system requires 
additional components, then the configuration files can be 
loaded dynamically into the FPGA. For example, if serial 
communication capability is required, then a preconfigured 
UART module can be loaded into the FPGA and the 
relevant software drivers activated. This can be achieved 
during the operation of the system with configuration 
times of the order of micro-seconds. 
 In the second design example, a PWM generator is 
implemented in the hardware to control the drive motors of 
the robot (Fig. 2). Timer 1 (pwmTimer) is configured to 
generate the PWM signal while Timer 2 (opbTimer) is 
configured to sense the feedback signal. If a fault is 
detected in the “sense” circuit during operation, then a 
different sensing circuit is dynamically created and the 
signals routed through it. The control cycle in this example 
was executed in real time with a sampling rate of 20 milli-
secs. The time for reconfiguration was of the order of a 
few micro-seconds showing that dynamic fault 
accommodation was achieved in real time. 
 In the third design example, a Neural Network (NN) is 
implemented in the FPGA to compensate for actuator 
deadband (Fig.3). The controller continuously monitors the 
output and dynamically instantiates the neural network in 
the FPGA when the performance degrades significantly 
due to load dependent deadband in the actuator dynamics. 
The Neural Network is modeled and designed in Simulink 
using the Xilinx toolset provided by Mathworks Inc. (Fig. 
4). Once the design has been successfully validated, a 
configuration bit stream can be generated that allows for 
dynamic creation of the NN module in the hardware. 

 
 5. CONCLUSIONS 

 
 In this paper, architecture was presented that 
facilitates the implementation of teams of intelligent UGVs.  
Three aspects of intelligence, namely reconfiguration, 
adaptation and learning, and communications in UGV 
teams were investigated and metrics for measuring their 
performance were proposed. The performance of the 
proposed architecture was evaluated using the metrics 
identified. 
 
 
REFERENCES 
 
[1]. J. S. Albus.  Outline for Theory of Intelligence. IEEE 
Trans. System, man and Cybernetics, Vol. 21, No.3, 
pp473-509, 1991. 

 [2] J.M. Evans, E.R. Messina, Performance Metrics for 
Intelligent Systems. .  Proc. of Performance Metrics for 
Intelligent Systems Workshop. 2000 PerMIS Workshop, 
2000. 
 [3] L.A. Zadeh. The Search for  Metrics of Intelligence- A 
Critical View. Proc. of Performance Metrics for Intelligent 
Systems Workshop. 2000 PerMIS Workshop, 2000. 
[4] E.C. Chalfant, S. Lee. Measuring the Intelligence of 
Robotic Systems: An Engineering Perspective. 
Proceedings of International Symposium on Intelligent 
Systems. Gaithersburg, MD. October, 1999. 
[5]. Y.Zhang, A.K. Mackworth. Formal Speification of 
Performance Metrics for Intelligent Systems. Proc. of 
Performance Metrics for Intelligent Systems Workshop. 
2000 PerMIS Workshop, 2000 
[6]. C. Schlenoff, L. Welsch, R. Madhavan, N. 
Zimmerman, Towards Measuring the Performance of 
Architectural Components of Autonomous Vehicular 
Systems. 2002 PerMIS Workshop August 13-15, 2002. 
[7]. J. S. Albus. Features of Intelligence Required by 
Unmanned Ground Vehicles.  Proc. of Performance 
Metrics for Intelligent Systems Workshop. 2000 PerMIS 
Workshop, 2000.  
[8] A.Yavnai. Metrics for System Autonomy, Part I: 
Metrics Definition. Proc. of Performance Metrics for 
Intelligent Systems Workshop. 2000 PerMIS Workshop, 
2000 
[9] R. Finkelstein. A Method for Evaluating the ‘IQ’ of 
Intelligent Systems. Proc. of Performance Metrics for 
Intelligent Systems Workshop. 2000 PerMIS Workshop, 
2000. 
[10] Sesh Commuri, Yushan Li, Dean Hougen, Rafael 
Fierro. Designing for System Intelligence. Proceedings of 
the 5th IFAC Symposium on the Intelligent Autonomous 
Vehicles, Lisbon, Portugal, July, 2004. 
[11] R.Muthuraman, A. Fajebe, S.Commuri. Intelligence 
in Embedded Controls-A Case Study. Proceedings of the 
IEEE Region 5 Technical Conference, April 2004. 
[12] S. Donti, and R. L. Haggard, “A survey of 
dynamically reconfigurable FPGA devices, “ Proc. IEEE., 
vol. 8, pp. 422-426, 2003. 
[13] Xilinx, Inc., Virtex-II Pro: Platform FPGA Handbook,  
UG012, v 2.0., 2002. 

 

 


